Electrical, electronic and magnetic properties of solids /

This book about electrical, electronic and magnetic properties of solids gives guidance to understand the electrical conduction processes and magnetism in a whole range of solids: ionic solids, metals, semiconductors, fast-ion conductors and superconductors. The experimental discussion is enriched b...

Full description

Bibliographic Details
Main Authors: Sirdeshmukh, D. B (Dinker B.), 1935- (Author), Sirdeshmukh, L (Lalitha), 1935- (Author), Subhadra, K. G., 1947- (Author), Sunandana, C. S., 1949- (Author)
Format: Book
Language:English
Published: Cham : Springer, [2014]
Series:Springer series in materials science ; v. 207
Subjects:
Table of Contents:
  • Contents note continued: 12.4 Electrical Conductivity
  • 12.4.1. Basic Theory
  • 12.4.2. Fundamental Model for Fast Ion Conduction
  • 12.5. Experimental Methods
  • 12.5.1. Tubandt Method
  • 12.5.2. AC Ionic Conductivity Measurements
  • 12.5.3. Tracer Diffusion Measurements
  • 12.5.4. Conductivity Optimization
  • 12.5.5. LiI-Al2O3
  • 12.5.6. CaO-Stabilised-ZrO2
  • 12.6. Applications
  • 12.6.1. Solid State Batteries
  • 12.6.2. Fuel Cell
  • 12.6.3. Chemical Sensors
  • 12.6.4. Nanoscale Memory Device
  • 12.7. Summary and Outlook
  • 12.8. Problems
  • References
  • 13. Superconductivity
  • 13.1. Introduction
  • 13.2. Discovery of Superconductivity
  • 13.3. Occurrence
  • 13.4. Properties of Superconductors
  • 13.4.1. Thermal Properties
  • 13.4.2. Magnetic Properties
  • 13.4.3. Type I and Type II Superconductors
  • 13.4.4. Isotope Effect
  • 13.5. Thermodynamics of Superconducting Transition
  • 13.5.1. Specific Heat
  • 13.5.2. Energy Gap
  • 13.5.3. Absorption of High Frequency Electromagnetic Radiation
  • 13.6. Theories of Superconductivity
  • 13.6.1. London Equations
  • 13.6.2. Coherence Length
  • 13.6.3. BCS Theory of Superconductivity
  • 13.6.4. Ginzburg--Landau (GL) Theory
  • 13.7. Normal and Josephson Tunneling
  • 13.7.1. Normal Tunneling
  • 13.7.2. Josephson Tunneling
  • 13.7.3. Macroscopic Quantum Interference Effect
  • 13.7.4. Electrical Characteristics of a SQUID
  • 13.8. High Temperature Superconductors
  • 13.8.1. Structure and Transition Temperature
  • 13.8.2. Properties
  • 13.9. Applications
  • 13.10. Concluding Remarks
  • 13.11. Problems
  • References.
  • Machine generated contents note: 1 Preliminaries
  • 1.1. General
  • 1.2. Atomic Structure
  • 1.2.1. Hydrogen Spectrum
  • 1.2.2. Bohr Model
  • 1.2.3. Sommerfeld Model
  • 1.2.4. Space Quantization
  • 1.2.5. Electron Spin
  • 1.2.6. Vector Atom Model
  • 1.2.7. Larmor Precession and Magnetic Moment
  • 1.2.8. Pauli's Principle and Electronic Structure
  • 1.2.9. Periodic Table
  • 1.3. Quantum Mechanics
  • 1.3.1. Schrodinger Equation
  • 1.3.2. Some Applications of the Schrodinger Equation
  • 1.3.3. Perturbation Theory
  • 1.3.4. Variation Principle
  • 1.3.5. Uncertainty Principle
  • 1.4. Statistical Mechanics
  • 1.5. Electromagnetic Theory
  • 2. Theory of Free Electrons I: Classical Theory
  • 2.1. Introduction
  • 2.2. Assumptions
  • 2.3. Applications
  • 2.3.1. DC Conductivity
  • 2.3.2. Electronic Specific Heat of Metals
  • 2.3.3. Thermal Conductivity of Metals
  • 2.3.4. Wiedemann--Franz Law
  • 2.3.5. Thermopower
  • 2.3.6. Hall Effect
  • 2.3.7. Magnetoresistance
  • 2.3.8. Transparency of Metals
  • 2.4. Achievements and Shortcomings
  • References
  • 3. Theory of Free Electrons II: Quantum Mechanical Theory
  • 3.1. Introduction
  • 3.2. Sommerfeld Model
  • 3.2.1. Energy Levels of a Free Electron in a Metal
  • 3.2.2. Fermi Energy and Related Parameters
  • 3.2.3. Density of States
  • 3.2.4. Fermi--Dirac Statistics
  • 3.2.5. Electron Energy Parameters at T = 0
  • 3.2.6. Electron Energy Parameters at T > 0
  • 3.3. Applications of the Sommerfeld Model
  • 3.3.1. Electronic Specific Heat
  • 3.3.2. Electrical Conductivity of Metals
  • 3.3.3. Thermal Conductivity of Metals
  • 3.3.4. Wiedemann--Franz Ratio
  • 3.3.5. Thermopower
  • 3.3.6. Other Properties
  • 3.4. Resume
  • 3.4.1. New Concepts
  • 3.4.2. Comparison of Results
  • 3.4.3. Limitations of the Sommerfeld Theory
  • 3.5. Problems
  • References
  • 4. Band Theory of Solids I: Main Framework
  • 4.1. Introduction
  • 4.2. Origin of Bands
  • 4.3. Bloch's Theorem
  • 4.3.1. Statement of Bloch's Theorem
  • 4.3.2. Proof of Bloch's Theorem
  • 4.4. Electron in a Periodic Potential (The Kronig--Penney Model)
  • 4.4.1. Solution of the Schrodinger Equation
  • 4.4.2. Inferences from the Central Equation
  • 4.4.3. Dynamics of Electrons in a Band
  • 4.5. Band Theory Vis-a-Vis Free Electron Theory
  • 4.5.1. Classification of Solids
  • 4.5.2. Electronic Specific Heat
  • 4.5.3. Hall Effect
  • 4.6. Other Models
  • 4.6.1. Wigner--Seitz Cellular Model
  • 4.6.2. Nearly Free Electron Model
  • 4.6.3. Tight Binding Model
  • 4.6.4. Other Methods
  • 4.7. Concepts and Ideas in the Band Theory
  • 4.8. Problems
  • References
  • 5. Band Theory of Solids II: Detailed Treatment of Select Topics
  • 5.1. Introduction
  • 5.2. Brillouin Zones
  • 5.2.1. Brillouin Zones of a One-Dimensional Lattice
  • 5.2.2. Brillouin Zones of a Two-Dimensional Lattice
  • 5.2.3. Brillouin Zones of Three-Dimensional Lattices
  • 5.3. Fermi Surface
  • 5.3.1. Square Lattice
  • 5.3.2. Simple Cubic Lattice
  • 5.3.3. Fermi Surfaces of Some Real Crystals
  • 5.4. Examples of Band Structure
  • 5.4.1. Aluminium
  • 5.4.2. Germanium
  • 5.4.3. Gallium Arsenide
  • 5.4.4. Sodium Chloride
  • 5.5. Effective Mass
  • 5.5.1. Types of Effective Masses
  • 5.5.2. Comparison of Different Values of Effective Masses
  • 5.5.3. Physical Significance of the Effective Mass
  • 5.6. Experiments on Band Structure
  • 5.6.1. Soft X-ray Emission
  • 5.6.2. Cyclotron Resonance
  • 5.6.3. Anomalous Skin Effect
  • 5.6.4. Magnetoresistance
  • 5.6.5. De Haas--van Alphen Effect
  • 5.7. Comparison of Sommerfeld Theory and Band Theory
  • 5.8. Problems
  • References
  • 6. Physics of Semiconductors
  • 6.1. Introduction
  • 6.2. Types of Semiconductors
  • 6.2.1. Intrinsic and Extrinsic Semiconductors
  • 6.2.2. Uniform and Nonuniform Semiconductors
  • 6.2.3. Direct Gap Semiconductors and Indirect Gap Semiconductors
  • 6.3. General Physical Properties
  • 6.3.1. Crystal Structure
  • 6.3.2. Interatomic Binding
  • 6.3.3. Band Structure
  • 6.3.4. Effective Masses
  • 6.4. Electrical Conductivity of Semiconductors
  • 6.4.1. Conductivity of Intrinsic Semiconductors
  • 6.4.2. Conductivity of Extrinsic Semiconductors
  • 6.4.3. Anisotropy of Conductivity
  • 6.5. Hall Effect in Semiconductors
  • 6.5.1. Hall Effect in Semiconductors with Spherical Energy Surfaces
  • 6.5.2. Hall Effect in Semiconductors with Complex Energy Surfaces
  • 6.6. Magnetoresistance
  • 6.7. Mobility of Carriers
  • 6.7.1. Definitions
  • 6.7.2. Experimental Determination of Mobilities
  • 6.7.3. Temperature Variation of Mobility
  • 6.8. Excess Carriers in Semiconductors
  • 6.8.1. Creation of Excess Carriers
  • 6.8.2. Diffusion
  • 6.8.3. Haynes and Shockley Experiment
  • 6.9. Problems
  • References
  • 7. Semiconductor Devices
  • 7.1. Introduction
  • 7.2. Semiconductor Diodes
  • 7.2.1. p-n Junction Diode
  • 7.2.2. Gunn Diode
  • 7.2.3. Tunnel Diode
  • 7.3. Transistors
  • 7.3.1. Point Contact Transistor
  • 7.3.2. Junction Transistor
  • 7.3.3. Field Effect Transistor
  • 7.3.4. MOSFET
  • 7.3.5. Insulated Gate Bipolar Transistor
  • 7.4. Few Other Devices
  • 7.4.1. Semiconductor Solar Cell
  • 7.4.2. Semiconductor Laser
  • 7.4.3. Charged Coupled Device
  • 7.5. Preparation of Device Material
  • 7.5.1. Material Purification
  • 7.5.2. Crystal Growth
  • 7.5.3. Fabrication of Junctions
  • 7.6. Problems
  • References
  • 8. Magnetism I: Diamagnetism and Paramagnetism
  • 8.1. Introduction
  • 8.2. Magnetic Parameters
  • 8.3. Experimental Methods
  • 8.3.1. Production and Measurement of Magnetic Fields
  • 8.3.2. Measurement of Susceptibility
  • 8.4. Diamagnetism
  • 8.4.1. Langevin's Classical Theory
  • 8.4.2. Quantum Mechanical Treatment
  • 8.4.3. Comparison with Experimental Results
  • 8.5. Paramagnetism
  • 8.5.1. Langevin's Classical Theory of Paramagnetism
  • 8.5.2. Quantum Theory of Paramagnetism
  • 8.5.3. Comparison with Experiment
  • 8.6. Pauli Paramagnetism
  • 8.7. Adiabatic Demagnetization
  • 8.8. Miscellaneous Effects in Diamagnetism and Paramagnetism
  • 8.8.1. Van Vleck Paramagnetism
  • 8.8.2. Landau Diamagnetism
  • 8.9. Problems
  • References
  • 9. Magnetism II: Ferromagnetism, Antiferromagnetism and Ferrimagnetism
  • 9.1. Introduction
  • 9.2. Ferromagnetism
  • 9.2.1. General
  • 9.2.2. Weiss Theory of Ferromagnetism
  • 9.2.3. Experimental Results
  • 9.2.4. Heisenberg Model
  • 9.2.5. Other Methods
  • 9.3. Antiferromagnetism
  • 9.3.1. General
  • 9.3.2. Molecular Field Theory of Antiferromagnetism
  • 9.3.3. Origin of Antiferromagnetism
  • 9.3.4. Experimental Results
  • 9.4. Ferrimagnetism
  • 9.4.1. General
  • 9.4.2. Neel's Theory of Ferrimagnetism
  • 9.4.3. Experimental Results
  • 9.5. Domains and Related Topics
  • 9.5.1. Concept of Domains
  • 9.5.2. Observation of Domains
  • 9.5.3. Magneto-Crystalline Anisotropy
  • 9.5.4. Domain Wall
  • 9.5.5. Magnetostriction
  • 9.5.6. Hysteresis
  • 9.5.7. Magnetic Bubbles
  • 9.6. Problems
  • References
  • 10. Magnetism III: Magnetic Symmetry and Magnetic Structures
  • 10.1. Introduction
  • 10.2. Magnetic Symmetry
  • 10.2.1. General
  • 10.2.2. Magnetic Point Groups
  • 10.2.3. Magnetic Space Groups
  • 10.3. Neutron Diffraction
  • 10.3.1. General
  • 10.3.2. Neutron Diffractometer
  • 10.3.3. Polarized Neutrons
  • 10.3.4. Analysis of Neutron Diffraction Data
  • 10.4. Examples of Magnetic Structures
  • 10.4.1. General
  • 10.4.2. Ferromagnetic Structures
  • 10.4.3. Antiferromagnetic Structures
  • 10.4.4. Ferrimagnetic Crystals
  • 10.4.5. Rare Earth Metals
  • References
  • 11. Magnetic Resonance
  • 11.1. Introduction
  • 11.1.1. General
  • 11.1.2. Spins of Atoms, Electrons and Nuclei
  • 11.1.3. Two Molecular Beam Magnetic Resonance Experiments
  • 11.1.4. Discovery Experiments
  • 11.2. General Theoretical Principles
  • 11.2.1. Larmor Precession
  • 11.2.2. Macroscopic Magnetization
  • 11.2.3. Complex Susceptibility Through Bloch Equations of Motion
  • 11.2.4. Spin Hamiltonian
  • 11.3. Experimental Techniques of NMR
  • 11.3.1. Continuous Wave NMR
  • 11.3.2. Pulse NMR
  • 11.3.3. Analysis of NMR Spectra
  • 11.3.4. Determination of Spin-Lattice Relaxation Time(T1) -
  • - 11.4 Case Studies in NMR
  • 11.4.1. NMR of the Superconducting Phase Transition
  • 11.4.2. Knight Shift
  • 11.4.3. NMR Diffraction
  • 11.5. ESR Theory
  • 11.5.1. ESR Hamiltonian
  • 11.5.2. ESR Spectrum and Its Analysis
  • 11.5.3. g-Tensor and A-Tensor Analysis
  • 11.5.4. Polycrystalline ESR Spectra
  • 11.5.5. Ferromagnetic and Antiferromagnetic Resonance
  • 11.6. Experimental Techniques in ESR
  • 11.6.1. Continuous Wave ESR Spectrometer
  • 11.6.2. Pulsed or Fourier Transform (FT) ESR Spectrometer
  • 11.7. Case Studies in ESR
  • 11.7.1. Microsymmetry-Crystal Field Effect
  • 11.7.2. Superconductors
  • 11.8. Current Trends and Developments
  • 11.8.1. Si Quantum Computer
  • 11.8.2. EDMR of Silicon Thin Film Solar Cell
  • 11.9. Summary and Outlook
  • 11.10. Problems
  • References
  • 12. Fast Ion Conduction
  • 12.1. Introduction
  • 12.2. Nature of Ionic Conduction
  • 12.3. Fast Ion Conduction
  • 12.3.1. General Characteristics
  • 12.3.2. Classification of Fast Ion Conductors
  • 12.3.3. Structural Varieties
  • 12.3.4. RbAg4I5
  • 12.3.5. α-AgI
  • 12.3.6. Na-β-Alumina
  • 12.3.7. Fluorite and Antifluorite
  • 12.3.8. Olivine-Based LiFePO4 Structure