Fundamentals and applications of biophotonics in dentistry /

Biophotonics in dentistry is a rapidly growing area. Unlike other books, this invaluable compendium touches on the fundamental areas in biophotonics. Contributed by world-renowned authors, it provides a basic understanding on a range of topics for individuals of different backgrounds to acquire a mi...

Full description

Bibliographic Details
Main Author: Kishen, Anil
Other Authors: Asundi, Anand
Format: Book
Language:English
Published: London : Singapore ; Hackensack, NJ : Imperial College Press ; distributed by World Scientific, [2007]
Series:Series on biomaterials and bioengineering ; v. 4
Subjects:
Table of Contents:
  • Fundamentals
  • Chapter 1 Introduction 1
  • 1.1 Introduction 1
  • 1.2 Definition and Significance 2
  • 1.3 Classification of Biophotonics in Dentistry 3
  • 1.3.1 Diagnostic 3
  • 1.3.2 Therapeutic 4
  • 1.3.3 Research 5
  • 1.4 Future Opportunities 7
  • 1.5 Scope of this Book 8
  • Chapter 2 Photomechanics 9
  • 2.1 Introduction to Mechanics 9
  • 2.1.1 Force and Stress 10
  • 2.1.2 Deformation and Strain 13
  • 2.1.3 Stress-Strain Equations 16
  • 2.2 Basic Optical Engineering 16
  • 2.2.1 Geometric Optics 17
  • 2.2.2 Physical (Wave) Optics 19
  • 2.2.3 Photonics 27
  • 2.3 Photomechanics 30
  • 2.3.1 Moir ̌and Grid Methods 31
  • 2.3.2 Speckle Methods 40
  • 2.3.3 Photoelasticity 46
  • 2.3.4 Holography 54
  • 2.3.5 Digital Photomechanics 58
  • 2.4 Concluding Remarks 60
  • Chapter 3 Biomedical Imaging 64
  • 3.1 Introduction 64
  • 3.2 Non-Linear Optical Microscopy (NLOM) Multiphoton Excited Fluorescence (MPEF) and Second Harmonic Generation (SGH) 65
  • 3.2.1 Principles of NLOM 66
  • 3.2.2 Development and Applications of NLOM 69
  • 3.2.3 NLOM in Dentistry 72
  • 3.3 Optical Coherence Tomography (OCT) 73
  • 3.3.1 Principles of OCT 74
  • 3.3.2 Developments and Applications of OCT 75
  • 3.3.3 OCT in Dentistry 80
  • 3.4 Coherent Anti-Stokes Raman Scattering (CARS) and Modulated Imaging (MI) 82
  • 3.5 Fluorescence Contrast Enhancement 85
  • 3.6 Concluding Remarks 87
  • Chapter 4 Spectroscopy
  • 4.1 Introduction 93
  • 4.2 Molecular Orbitals and Transitions 94
  • 4.3 Transition Dipole Moment 99
  • 4.4 Spin Selection Rule 100
  • 4.5 Franck-Condon Principle 102
  • 4.6 Jablonski Diagram 104
  • 4.7 Stokes Shift 107
  • 4.8 Spectrophotometry 108
  • 4.9 Fluorescence Intensity and Lifetime 110
  • 4.10 Spectrofluorimetry 112
  • 4.11 Fluorescence Quenching 115
  • 4.12 Fluorescence Resonance Energy Transfer (FRET) 116
  • 4.13 Fourier Transform Infrared (FTIR) Spectroscopy 117
  • 4.14 Concluding Remarks 120
  • Chapter 5 Lasers and Laser Tissue Interaction
  • 5.1 Introduction 123
  • 5.2 Laser Basics 124
  • 5.2.1 Characteristics of Lasers 126
  • 5.3 Light Propagation in Tissue 128
  • 5.4 Optical Imaging and Diagnosis 131
  • 5.4.1 Optical Imaging 131
  • 5.4.2 Optical Spectroscopic Diagnosis 133
  • 5.5 Optical Processing of Tissue 141
  • 5.5.1 Photothermal Effects 142
  • 5.5.2 Photomechanical Effects 144
  • 5.5.3 Photochemical Effects 144
  • 5.5.4 Applications of Laser Processing of Tissue 145
  • 5.6 Concluding Remarks 148
  • Chapter 6 Mechanisms and Applications of Photodynamic Therapy
  • 6.1 Historical Background 154
  • 6.2 Photosensitizers 155
  • 6.3 Light Applicators 156
  • 6.4 PDT Mechanisms 161
  • 6.4.1 Photophysics and Photochemistry 161
  • 6.4.2 Biological Effect 162
  • 6.5 PDT Dosimetry 166
  • 6.6 Progress in Clinical Application 167
  • 6.6.1 Non-Malignant Diseases 168
  • 6.6.2 Malignant Diseases 169
  • 6.7 PDT in Dentistry 175
  • 6.7.1 Technical Challenges 175
  • 6.7.2 Current Status 176
  • 6.8 Concluding Remarks 177
  • Applications
  • Chapter 7 Dental Photo-Biomechanics
  • 7.1 Introduction 183
  • 7.2 Photoelasticity 184
  • 7.2.1 Introduction 184
  • 7.2.2 Photoelastic Models 185
  • 7.2.3 Polariscope 186
  • 7.2.4 Photoelastic Fringe Analysis 189
  • 7.2.5 Applications of Photoelasticity in Dentistry 192
  • 7.3 Moir ̌Interferometry 195
  • 7.3.1 Introduction 195
  • 7.3.2 Specimen Grating and Moir ̌Interferometer 196
  • 7.3.3 Applications of Moir ̌Technique in Dentistry 197
  • 7.4 Electronic Speckle Pattern Correlation Interferometry 200
  • 7.4.1 Introduction 200
  • 7.4.2 ESPI Experimental Arrangement 201
  • 7.4.3 Applications of ESPI Technique in Dentistry 201
  • 7.5 Concluding Remarks 207
  • Chapter 8 Micro-Raman Spectroscopy: Principles and Applications in Dental Research
  • 8.1 Introduction 209
  • 8.2 Breakdown of Composite Repair/Replacement Materials 210
  • 8.3 Material/Tissue Interface 211
  • 8.4 Brief Introduction to Raman Spectroscopy 212
  • 8.5 Applications of Micro-Raman Spectroscopy in Dental Research 215
  • 8.5.1 Characterization of the Smear Layer 215
  • 8.5.2 Characterization of Smear Debris 224
  • 8.5.3 Quantifying Reactions at the Adhesive/Dentin Interface 226
  • 8.5.4 Investigation of Adhesive Phase Separation 231
  • 8.6 Concluding Remarks 239
  • Chapter 9 Dental and Oral Tissue Optics
  • 9.1 Introduction 245
  • 9.2 Continuous Wave Light Interaction with Tissues 248
  • 9.3 Time-Resolved Diffusion Measurements 253
  • 9.4 Optical Properties of Dental Enamel and Dentin 256
  • 9.4.1 Structure of Enamel and Dentin 256
  • 9.4.2 Spectral Properties of Enamel and Dentin 259
  • 9.4.3 Scattering Properties of Enamel 261
  • 9.4.4 Scattering Properties of Dentin 263
  • 9.4.5 Waveguide Effects 264
  • 9.5 Propagation of Polarized Light in Tissues 266
  • 9.5.1 Basic Principles 266
  • 9.5.2 Transillumination Polarization Technique 268
  • 9.5.3 Backscattering Polarization Imaging 269
  • 9.5.4 In-Depth Polarization Spectroscopy 272
  • 9.5.5 Superficial Epithelial Layer Polarization Spectroscopy 273
  • 9.5.6 Polarization Microscopy 274
  • 9.5.7 Digital Photoelasticity Measurements 274
  • 9.6 Optothermal Radiometry 275
  • 9.7 Thermal Imaging 279
  • 9.8 Coherent Effects in the Interaction of Laser Radiation with Tissues and Cell Flows 280
  • 9.9 Dynamic Light Scattering 283
  • 9.9.1 Quasi-Elastic Light Scattering 283
  • 9.9.2 Dynamic Speckles 284
  • 9.9.3 Full-Field Speckle Technique-LASCA 285
  • 9.9.4 Diffusion Wave Spectroscopy 286
  • 9.9.5 Experimental Studies 287
  • 9.10 Coherent Backscattering 287
  • 9.11 Optical Coherence Tomography (OCT) 288
  • 9.11.1 Introduction 288
  • 9.11.2 Conventional (Time-Domain) OCT 289
  • 9.11.3 En-Face OCT 290
  • 9.11.4 Doppler OCT 291
  • 9.11.5 Polarization Sensitive OCT 292
  • 9.11.6 Optical Coherence Microscopy 294
  • 9.12 Concluding Remarks 295
  • Chapter 10 Fiber Optic Diagnostic Sensors
  • 10.1 Introduction 301
  • 10.2 Fiber Optics in Diagnosis 302
  • 10.2 Fiber Optic Diagnostic Sensors: Principles 304
  • 10.4 Direct Fiber Optic Sensors: Principles 304
  • 10.4.1 Direct Fiber Optic Physical Sensors 306
  • 10.4.2 Direct Fiber Optic Chemical Sensors 306
  • 10.5 Indirect Fiber Optic Sensors: Principles 309
  • 10.5.1 Indirect Fiber Optic Physical Sensors 310
  • 10.5.2 Indirect Fiber Optic Chemical Sensors 313
  • 10.6 Biosensors 316
  • 10.7 Applications of Fiber Optic Diagnostic Sensors in Dentistry 319
  • 10.8 Concluding Remarks 326